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The observed behaviour of some basic parameters such as levelling-off degree of
polymerization (LODP) and degree of crystallinity of cellulose are correctly pre-
dicted from basic theoretical arguments and a simple statistical mechanical fiber

model.

On the molecular level the cellulose molecule is a chain-
like polymer composed of 1,4-8-p linked polyanhydro glu-
copyranose units. The molecular lengths vary greatly from
below 1000 up to 15000 glucose units, depending on origin
and extent of degradation during isolation.! On the supra-
molecular level these chains are aggregated into bundles of
fibrilles of varying degree of order ranging from that of the
pure crystalline state to that of the amorphous state, and on
the morphological level the spatial arrangement and orien-
tation of the fibrilles make up the macroscopic cellulose
fiber.

The chemical and physical properties of cellulose can be
explained only by combining knowledge of the chemical
nature of the cellulose molecules and of their structural and
morphological arrangement in the solid state.

To date, only average properties of the macroscopic
fibres (such as average molecular weight, viscosity, fiber
length, degree of crystallinity etc.), have been used as a
means of characterizing different products and their suit-
abilities for various uses, while the actual origin of the
variation in these properties on the molecular to super-
molecular level often has been ignored. Recently, tech-
niques such as NMR and Raman spectroscopy and refined
crystallographic methods have been shown to provide pow-
erful methods for probing the inner secrets of polymeric
materials. Today, rapidly developing computational facil-
ities provide the possibility of applying basic physico-
chemical arguments in a more quantitative manner for
explaining the supermolecular structure of biopolymers
such as cellulose.

In the following we attempt to describe some properties
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of the cellulose supramolecular structure, such as degree of
crystallinity, length of “crystallites” and frequency of amor-
phous regions from basic theoretical arguments.

A fibrille may be pictured as a bundle of chains of paral-
lel cellobioside units. For simplicity, the smallest unit can,
as a first approximation, be taken as consisting of only two
parallel chains linked to each other by intramolecular
hydrogen bonds? (Fig. 1). In fact, it has been noticed that
the experimental fiber diffraction data can be adequately
indexed on the basis of a two-chain model.?

Neighbouring chains along the a axis are linked by an
intermolecular hydrogen bond such that the chains form
hydrogen-bonded sheets of chains parallel to the a axis.
There are no hydrogen bonds along the unit cell diagonals;
van der Waals forces are believed to be solely responsible
for the stability of the structure in these directions.

The opposing segments of the parallel chains can be
either bound to each other in a “crystal-like” conformation
C or lie at a distance from each other in an “amorphous”
state A. In a simplified manner, a fibrille can then be
pictured as a chain of n segments with altering crystalline
and amorphous regions CCCCAACCA. This naive repre-
sentation allows us to investigate some of the important
physical features of the system in much the same manner as
has been done earlier for the phase transition between helix
and random coil in polypeptide chains.*

This model is able to distinguish between the contribu-
tion of bonded and unbonded segments to the partition
function, and it further considers the influence of the state
of neighbouring segments on these contributions.

Before going on to construct the partition function for a

Fig. 1. Schematic
representation of the
position of the stronger
H-bonds between two
parallel chains of
indefinite length in the
body of the crystal.2



chain of parallel segments we recall that a fibrille is com-
posed of a great number of such parallel chains. If these
were independent of each other the total partition function
would be the product of the partition functions for the
individual chain pairs. If the chains interact (which they do)
the formal treatment becomes more complicated unless we
consider the interaction to be very strong, in which case the
partition function would simply reduce to the partition
function for a chain pair. This could be envisaged as a
template for the crystal formation. Experimental observa-
tions of strong periodicity between crystal and amorphous
regions along the whole fibrille suggest that the latter case
applies.’

In the following we assume the strong interaction to
apply, and the fibrille partition function is assumed to be of
the form
Q = Q°- > W(E)exp(~E/kT) )

1
Where E, stands for all the energy states of a single chain
pair, W(E,) is the multiplicity of each energy state and the
constant Q° stands for all other interactions. If E is taken
as reference state we can write (1) as

Q = Q°- e EHT {1 + Egiexp(Ae,-/kT)} =0°-0 (2

where Ag; stands for the energy difference of all possible
states i with respect to E,*) and g; is the number of times
such a state can occur in a chain of length n.

*In our case it is convenient to consider the non-bonded fragment
as reference. Further, a chain length of minimum 3 monomers is
postulated (the first three segments are taken to be non-bonded).
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Before we go on to construct the partition function Q for
the chain, we will make some specific assumptions about
the statistical weights to be attached to the particular states.
As we limit ourselves to the thermodynamics associated
with the transmission from the crystalline to the amorphous
state it is not necessary to consider the quantum states of
the individual segments as long as the relative weights of
crystalline and amorphous states are correctly represented.
We assign the following statistical weights to the different
states of the chain.

— Unity for each unbonded segment

— The quantity s each time a crystalline (hydrogen-bonded)
position follows another

— The quantity os each time a hydrogen-bonded position
follows a non-bonded one (boundary between bonded
and unbonded segments).

The meaning of these weights can be interpreted as fol-
lows:* s corresponds to the equilibrium constant for the
tendency of the crystalline section to grow at the expense of
the amorphous region. The quantity os is a measure of the
tendency toward nucleation of crystalline sections. The
value unity is thus an arbitrary reference point for a seg-
ment which is not bonded, corresponding to 50 % crystal-
linity, and the factor s is a measure of the contribution to
the partition function of a bonded segment relative to an
unbonded one.

The larger decrease in statistical weight assumed by the
first bond formation after one (or several) unbonded seg-
ments is due to restricted freedom of motion, not only of
the segment to be bonded but also of the preceding un-
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Fig. 2. Hydrogen-bonded fraction,
s = 1.01; @ ¢ = 0.0001, + ¢ = 0.001.
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Fig. 3. Lower DP values as a function of
sigma; @ o = 0.0001, + o = 0.001.
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bonded segment(s). Since the same Boltzmann factor is
involved, the contribution to the partition function is writ-
ten as o s where 0 < 1.

A formal representation of the partition function Q may
be obtained for a chain of n segments from the above
assumption by simply enumerating the various ways of
arranging a given number of bonded and unbonded seg-
ments.

(n=2)2  n-1-2 (k—-l)!(n—k—Z)!Sk

0=1+ 3 o 3 DDk @

1

where the first summation extends over k and the second
over /, and (n-2)/2 is the largest integer less than (n-2)/2.
Unfortunately the expression for Q obtained in such a way
is of a rather complex algebraic form and unattractive for
general calculations. Some fundamental features can, how-
ever, be derived from the above expression:

As derived from (3), the fraction of bonded segments is
given by *

din Q
dins

1
©=05 .

Similarly, the number of amorphous (or crystalline) regions
in the “fiber” is given by:*

dIn Q
v*dlno ©)

The actual behaviour of Q as a function of n is shown in
Fig. 2 for some values of s and o close to the values thought
to apply for the cellulose fiber.

In order to obtain plausible estimates for the parameters
used in our simplified chain model it is necessary to refer to
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the molecular structure of cellulose as represented in
Fig. 1.

As mentioned earlier, the quantity s can be viewed as the
equilibrium constant for a process in which an amorphous
section is incorporated into the crystalline section. For this
we have the familiar relation (6):

dlns

Y i AH/RT? (6)

where T is the absolute temperature and AH is the en-
thalpy change for converting one segment from the amor-
phous to the crystalline form.

Experimental evidence gives at least a clue to the likely
order of magnitude of the parameters s and o: The fact that
the crystallinity of cellulose is about 50-60 %? indicates that
s must be very close to 1. Such a small stabilization energy
in an essentially stable polymer is understandable if we
remember that this value is composed of the difference
between the energies of hydrogen bonds between chains
and the corresponding energies of hydrogen bonds between
single strands and the water solvent molecules.® Support
for such a small stabilization energy value is also provided
by the fact that the transformation of wet native cellulose to
wet unmercerized cellulose has been found to be weakly
exothermic (~ 2 cal per g cellulose).®

An order of magnitude of ¢ can be obtained if we con-
sider that an energy of k7/2 is to be attributed to each
degree of freedom from both the kinetic and potential
energy terms of an unbonded segment. Assuming that the
bonding of an unbonded fragment will result in the loss of

SA theoretically derived value for the H-bonds in cellulose is
~ 4.75 kcal mol™',” while similar values for H-bonds involving
water are ~ 4.7 kcal mol~'.8
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Fig. 4. Phase diagram for an H-bonded 100000
polymer. Area between curves indicates
“mixed” polymer with amorphous and
crystalline character;
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1-2 degrees of freedom for the two segments closest to the References
interface, an energy loss corresponding to a ¢ value larger 1. Kréssig, H. In: Kennedy, J. F., Phillips, G. O., Wedlock, D. J.

than 10~ but smaller than 102 will result.

The values s = 1.01 and ¢ = 1073 predict a LODP
(levelling-off DP) value of about 35 for an initial DP of
1000 (Fig. 3), which is in good agreement with the experi-
mental values® of around 40 found for most celluloses.
Assuming that solubility requires a high degree of amor-
phous character and that ® > 0.1 implies insolubility, these
values also correctly indicate that molecular fragments of a
DP value greater than 20 should be essentially insoluble in
water (Fig. 4). A predicted degree of crystallinity of about
56 % (Fig. 2) for a DP value of 1000 is also consistent with
experimental evidence.

The influence of swelling on, for example, the LODP
could shed additional light on the validity of a statistical
treatment of the above kind, although the interpretation of
such data, if existent, would be difficult as it includes con-
tributions from both intra- and interfibrillar changes.
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